Scientific paper

Synthesis and Biological Activity of New Series of N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(substituted Phenyl)-3-Chloro-4-Oxo-1-Azetidinecarboxamide

Ritu Sharma,* Pushkal Samadhiya, Savitri D. Srivastava and Santosh K. Srivastava

Synthetic Organic Chemistry Laboratory, Department of Chemistry, Dr. H. S. Gour University (A Central University), Sagar, Madhya Pradesh, India 470003

* Corresponding author: E-mail: ritusharmaic @rediffmail.com

Received: 24-09-2010

Abstract

The synthesis of a new series of N-[3-(1H-1,2,3-benzotriazol-1-yl)propyl]-2-(4-substituted phenyl)-3-chloro-4-oxo-1azetidinecarboxamides **4a**–**s** has been executed from 1,2,3-benzotriazole as a starting material by conventional method. Compounds **4a**–**s** were screened for their antibacterial, antifungal and antitubercular activities. Structures of all the synthesized compounds were confirmed by chemical and spectroscopic analyses such as IR, ¹H NMR, ¹³C NMR and FAB mass spectroscopy.

Keyword: Synthesis, 1,2,3-benzotriazole, azetidinone, antimicrobial, antitubercular.

1. Introduction

Heterocyclic compounds have captured our attention for many reasons, mainly due to their biological activities. A wide variety of 2-oxoazetidine derivatives have been described for their chemotherapeutic importance. 2-Oxoazetidine and its derivatives possess various types of biological activities, such as antibacterial,¹⁻⁴ anticonvulsant,⁵ analgesic, antitubercular,⁶⁻⁸ antiinflammatory,⁹ antifungal,¹⁰⁻¹³ as synthetic precursors for amino acids,¹⁴ to mediate cholesterol absorption,¹⁵ for antiviral¹⁶ and CNS¹⁷ activity, etc. 2-Oxozetidines also serve as synthons for many biologically active compounds. Many antibiotics like penicillin and cephalosporin contain 2-oxoazetidine ring.

Benzotriazole derivatives have pharmaceutical importance possessing several remarkable biological activities, such as antibacterial,^{11,18} antifungal,^{1,19} antihistaminic, antiadrenergic and DNA cleavage,²⁰ antitubercular,²¹ anticancer, antiemetic,²² antitumor, antiinflammatory,^{23,24} anticonvulsant,²⁵ as protein kinase inhibitors²⁶ and respiratory syndrome protease inactivators,²⁷ analgesic,²⁸ anti-viral²⁹ etc. The biological activities of both 2-oxoazetidine and 1,2,3-benzotriazole aroused our interest in the synthesis of 2-oxoazetidine derivatives of 1,2,3-benzotriazole. 2-

Oxoazetidine derivatives were synthesized in four steps shown in Scheme 1. All synthesized compounds were screened against some selected bacteria and fungi for their antimicrobial activity and antitubercular activity screened against *Mycobacterium tuberculosis* using H37Rv strain. The structures of all the newly synthesized compounds were confirmed by elemental analysis, IR, ¹H and ¹³C NMR and FAB mass spectroscopy.

Comp.	X	Comp.	X	Comp.	X
3a, 4a	Н	3h, 4h	4-NO ₂	30, 40	3-CH ₃
3b, 4b	4-Cl	3i, 4i	$3-NO_2$	3p, 4p	2-CH ₃
3c, 4c	3-Cl	3j, 4j	$2 - NO_2$	3q, 4q	4-OH
3d, 4d	2-Cl	3k, 4k	$4-OCH_3$	3r, 4r	3-OH
3e, 4e	4-Br	3I , 4I	3-OCH ₃	3s, 4s	2-OH
3f, 4f	3-Br	3m, 4m	2-OCH ₃		
3g, 4g	2-Br	3n, 4n	4-CH ₃		

Scheme 1. The synthesis of compounds 1, 2, 3a-s and 4a-s.

2. Results and Discussion

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(substituted phenyl)-3-chloro-4-oxo-1-azetidinecarboxamides 4a-s were synthesized in four steps (Scheme 1): 1,2,3benzotriazole on reaction with Cl(CH₂)₃Br at room temperature afforded 1-(3-chloropropyl)-1H-1,2,3-benzotriazole (1). IR spectrum of 1 displayed absorption at 1235 and 749 cm⁻¹ for N–CH₂ and C–Cl, respectively, clearly indicating the disappearance of NH absorption 3445 cm⁻¹ of 1,2,3 benzotriazole. The compound 1 on reaction with urea at room temperature yielded N-[3-(1H-1,2,3-benzotriazol-1-yl)propyl]urea (2). IR spectrum of 2 showed absorption for CO at 1658 cm⁻¹ while absorption of C-Cl has disappeared. The ¹H NMR spectrum of **2** displayed a signal for CH₂-N at δ 3.30 ppm and in its ¹³C NMR spectrum a signal for CO group at δ 163.3 ppm. The compound 2 on further reaction with several substituted aromatic aldehydes produced **3a-s**, for them a characteristic absorption for Schiff base (N=CH) in IR spectrum appeared at 1544-1572 cm⁻¹ and in the ¹H and ¹³C NMR spectrum a signal appeared in the range of δ 7.86–8.12 and 145.2–155.9 ppm, respectively. In the ¹H NMR spectrum of 2 a broad signal for NH₂ (previously at δ 5.96 ppm) has disappeared. The compounds 3a-s on treatment with CICH₂COCl in the presence of Et₂N furnished final products 4a-s. In the IR spectrum of 4a-s carbonyl group of β-lactam ring showed characteristic absorption in the range of 1732–1765 cm⁻¹ and ¹H NMR spectrum of **4a–s** showed two doublets for NCH and CHCl in the range of δ 5.15-5.54 and 4.45-4.66 ppm, respectively. However, the ¹³C NMR spectrum of 4a-s displayed three signal for NCH, CHCl and cyclic CO in the range of δ 58.8–68.8, 47-54.9 and 166-175 ppm, respectively. The IR absorption, ¹H and ¹³C NMR signal of N=CH have disappeared.

3. Pharmacological Results and Discussion

The results of the antimicrobial (antibacterial, antifungal and antitubercular) activities are summarized in Tables 1, 2 and 3. The results of the antimicrobial screening data revealed that all the compounds 4a-s showed considerable and varied activity against the selected microorganisms. The new series of **4a–s** prepared was screened for their antibacterial and antifungal activity against some selected bacteria and fungi and antitubercular activity against *M. tuberculosis* (H37Rv strain). The investigation of antimicrobial data revealed that the compounds **4b**, **4d–f**, **4h–j** displayed high activity, the compounds **4c**, **4g** and **4r** showed moderate activity and the rest of the compounds showed less activity against all the strains compared with standard drugs.

4. Conclusion

The research study reports the successful synthesis of a new series of **4a**–**s**. Biological testing of the newly synthesized systems bearing azetidinone moiety revealed that all the compounds tested showed moderate to good antibacterial, antifungal and antitubercular activities against selected microbial strains.

5. Experimental

Melting points were determined in open glass capillaries and are uncorrected. Progress of reaction was monitored by silica gel-G coated TLC plates using Me-OH:CHCl₂ system (1:9). The spot was visualized by exposing dry plate at iodine vapours chamber. IR spectra were recorded as KBr discs on Schimadzu 8201 PC FTIR spectrophotometer (v_{max} in cm⁻¹); ¹H and ¹³C NMR spectra were measured on a Bruker DRX-300 spectrometer in CDCl₃ at 300 and 75 MHz, respectively using TMS as the internal standard. All chemical shifts are reported on δ scale. The FAB mass spectra were recorded on a Jeol SX-102 mass spectrometer. Elemental analyses were performed on a Carlo Erba 1108 analyzer providing satisfactory results. For column chromatographic purification of the products Merck silica Gel 60 (230-400 Mesh) was used. The reagent grade chemicals were purchased from the commercial sources and further purified before use.

Synthesis of the 1-(3-chloropropyl)-1*H*-1,2,3-benzotri azole (1)

A mixture of 1,2,3-benzotriazole and 1-bromo-3chloropropane (1:1 mol) was dissolved in methanol at room temperature. The reaction mixture was continuously stirred on a magnetic stirrer for about 360 min. The product was filtered and purified with column chromatography and recrystallized from ethanol at room temperature to yield **1**.

Sharma et al.: Synthesis and Biological Activity of New Series of ...

1-(3-chloropropyl)-1*H***-1,2,3-benzotriazole.** Yield: 60%; mp 77–79 °C; IR v 749 (C–Cl), 1235 (N–CH₂), 1563 (C=C), 3020, 2836 (CH) cm⁻¹. ¹H NMR δ 2.13 (m, 2H, CH₂CH₂CH₂), 3.49 (t, 2H, *J* = 7.5 Hz, CH₂CH₂CH₂-Cl), 4.17 (t, 2H, *J* = 7.5 Hz, N-CH₂CH₂CH₂), 7.29–7.96 (m, 4H, ArH). ¹³C NMR δ 36.2 (CH₂CH₂CH₂), 43.7 (CH₂CH₂CH₂-Cl), 49.3 (N-CH₂CH₂CH₂), 118.5 (C-2), 120.2 (C-5), 128.4 (C-3), 128.9 (C-4), 145.5 (C-6), 147.9 (C-1). Anal. Calcd for C₉H₁₀N₃Cl: C, 55.25; H, 5.15; N, 21.47. Found: C, 55.21; H, 5.13; N, 21.41; MS-FAB: 195 (M⁺).

Synthesis of the *N*-[3-(1*H*-1,2,3-benzotriazol-1-yl)pro pyl]urea (2)

A mixture of 1 and urea (1:1 mole) was dissolved in methanol at room temperature. The reaction mixture was continuously stirred on a magnetic stirrer for about 270 min. The product was filtered and purified with a column chromatography and recrystallized from ethanol at room temperature to yield 2.

Yield: 71%; mp 60–63 °C; IR v 1234 (C–NH), 1658 (CO), 3340 (NH), 3415 (NH₂) cm^{-1.} ¹H NMR δ 2.17 (m, 2H, CH₂CH₂CH₂), 3.30 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂ CH_2 NH), 4.12 (t, 2H, J = 7.4 Hz, N-CH₂CH₂CH₂), 5.64 (s, 1H, NH), 5.96 (s, 2H, NH₂), 6.80–7.70 (m, 4H, ArH). ¹³C NMR δ 39.5 (CH₂CH₂CH₂), 47.2 (CH₂CH₂CH₂-NH), 48.2 (N-CH₂CH₂CH₂), 117.6 (C-2), 121.3 (C-5), 127.8 (C-3), 128.2 (C-4), 144.7 (C-6), 146.7 (C-1), 163.3 (CO). Anal. Calcd for C₁₀H₁₃N₅O: C, 54.78; H, 5.97; N, 31.94. Found: C, 54.79; H, 5.90; N, 31.88; MS-FAB: 219 (M⁺).

Synthesis of 3a-s

A mixture of compound **2** and appropriate substituted benzaldehydes (1:1 mole) was dissolved in methanol at room temperature and allowed to react. The reaction mixture was first continuously stirred on a magnetic stirrer for about 120–180 min then refluxed on a steam bath for about 90–135 min. The products were filtered and cooled at room temperature. The filtered products were purified with a column chromatography and recrystallized from ethanol at room temperature to yield **3a–s**.

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(phenyl) methylidene]urea (3a). Yield: 58%; mp 70–72 °C; IR v 1553 (N=CH), 1662 (CO), 3360 (NH) cm⁻¹. ¹H NMR δ

2.06 (m, 2H, $CH_2CH_2CH_2$), 3.36 (t, 2H, J = 7.4 Hz, $CH_2CH_2CH_2$ -NH), 4.15 (t, 2H, J = 7.4 Hz, $N-CH_2CH_2$ CH₂), 5.79 (s, 1H, NH), 7.40–7.74 (m, 9H, ArH), 7.85 (s, 1H, N=CH). ¹³C NMR δ 38.4 (CH₂CH₂CH₂CH₂), 45.3 (CH₂CH₂CH₂-NH), 51.3 (N-CH₂CH₂CH₂), 115.3 (C-2), 120.0 (C-5), 125.8 (C-3), 126.3 (C-8, C-12), 127.5 (C-9, C-11), 128.5 (C-4), 129.2 (C-10), 131.2 (C-7), 136.2 (C-6), 145.2 (N=CH), 146.1 (C-1), 149.3 (12C, Ar), 162.6 (CO). Anal. Calcd for C₁₇H₁₇N₅O: C, 66.43; H, 5.57; N, 22.78. Found: C, 66.40; H, 5.48; N, 22.72. MS-FAB: 307 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-vl)propvl]-N'-[(4-chlo roophenyl)methylidene]urea (3b). Yield: 66%; mp 81-82 °C; IR v 740 (C-Cl), 1566 (N=CH), 1675 (CO), 3372 (NH) cm⁻¹. ¹H NMR δ 2.28 (m, 2H, CH₂CH₂CH₂), 3.36 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂-NH), 4.28 (t, 2H, J =7.4 Hz, N-CH₂CH₂CH₂), 5.76 (s, 1H, NH), 7.32–7.81 (m, 8H, ArH), 7.92 (s, 1H, N=CH). ¹³C NMR δ 38.9 $(CH_2CH_2CH_2),$ 44.5 (CH₂CH₂CH₂-NH), 47.3 (N-CH₂CH₂CH₂), 112.5 (C-2), 121.0 (C-5), 125.4 (C-3), 127.7 (C-8, C-12), 128.8 (C-4), 129.2 (C-9, C-11), 132.3 (C-6), 135.5 (C-10), 137.8 (C-7), 144.1 (C-1), 152.6 (N=CH), 163.5 (CO). Anal. Calcd for C₁₇H₁₆N₅OCl: C, 59.73; H, 4.71; N, 20.48. Found: C, 59.62; H, 4.62; N, 20.35. MS-FAB: 341 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-N'-[(3-chlo rophenyl)methylidenelurea (3c). Yield: 67%; mp 76-78 °C; IR v 735 (C-Cl), 1559 (N=CH), 1673 (CO), 3363 (NH) cm⁻¹. ¹H NMR δ 2.27 (m, 2H, CH₂CH₂CH₂), 3.37 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂-NH), 4.25 (t, 2H, J = 7.4 Hz, N-CH₂CH₂CH₂), 5.79 (s, 1H, NH), 7.10-7.90 (m, 8H, ArH), 7.98 (s, 1H, N=CH). ¹³C NMR δ 38.5 (CH₂CH₂CH₂-NH), $(CH_2CH_2CH_2),$ 43.7 52.2 (N-CH₂CH₂CH₂), 113.3 (C-2), 120.5 (C-5), 125.3 (C-3), 126.4 (C-8), 127.7 (C-12), 128.3 (C-4), 129.4 (C-10), 131.2 (C-11), 132.7 (C-6), 135.6 (C-9), 139.2 (C-7), 146.1 (C-1), 150.7 (N=CH), 162.9 (CO). Anal. Calcd for C₁₇H₁₆N₅OCl: C, 59.73; H, 4.71; N, 20.48. Found: C, 59.63; H, 4.62; N, 20.44. MS-FAB: 341 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(2-chlo rophenyl)methylidene]urea (3d).

Yield: 66%; mp 80–81 °C; IR v 734 (C-Cl), 1567 (N=CH), 1672 (CO), 3371 (NH) cm⁻¹. ¹H NMR δ 2.22 (m, 2H, CH₂CH₂CH₂), 3.31 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂-NH), 4.24 (t, 2H, J = 7.4 Hz, N-CH₂CH₂CH₂), 5.73 (s, 1H, NH), 7.20–7.90 (m, 8H, Ar-H), 8.07 (s, 1H N=CH). ¹³C NMR δ 38.7 (CH₂CH₂CH₂), 113.4 (C-2), 118.3 (C-5), 125.8 (C-3), 126.7, 127.4 (C-11), 128.2 (C-4), 129.2 (C-9), 130.2 (C-12), 133.2 (C-6), 133.8 (C-8), 138.2 (C-7), 147.2 (C-1), 151.6 (N=CH), 161.0 (CO). Anal. Calcd for C₁₇H₁₆N₅OCl: C, 59.73; H, 4.71; N, 20.48. Found: C, 59.65; H, 4.70; N, 20.40. MS-FAB: 341 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-N'-[(4-bro mophenyl)methylidene]urea (3e). Yield: 65%; mp 78-79 °C; IR v 636 (C-Br), 1560 (N=CH), 1667 (CO), 3374 (NH) cm⁻¹. ¹H NMR δ 2.27 (m, 2H, CH₂CH₂CH₂), $3.30 (t, 2H, J = 7.5 Hz, CH_2CH_2CH_2-NH), 4.29 (t, 2H, J =$ 7.5 Hz, N-CH₂CH₂CH₂), 5.77 (s, 1H, NH), 7.41–7.69 (m, 8H, ArH), 7.97 (s, 1H, N=CH). ¹³C NMR δ 36.2 $(CH_2CH_2CH_2)$, 44.3 (CH₂CH₂CH₂-NH), 50.3 (N-CH₂CH₂CH₂), 114.1 (C-2), 121.3 (C-5), 123.2 (C-10), 125.1 (C-3), 128.4 (C-8, C-12), 129.3 (C-4), 132.4 (C-9, C-11), 134.5 (C-6), 136.9 (C-7), 148.2 (C-1), 152.7 (N=CH), 163.8 (CO). Anal. Calcd for C₁₇H₁₆N₅OBr: C, 52.86; H, 4.17; N, 18.13. Found: C, 52.82; H, 4.13; N, 18.07. MS-FAB: 386 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-N'-[(3-bro mophenyl)methylidene]urea (3f). Yield: 64%; mp 80-81 °C; IR v 643 (C-Br), 1568 (N=CH), 1664 (CO), 3366 (NH) cm⁻¹. ¹H NMR δ 2.24 (m, 2H, CH₂CH₂CH₂), 3.37 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂-NH), 4.30 (t, 2H, J =7.6 Hz, N-CH₂CH₂CH₂), 5.73 (s, 1H, NH), 7.23–7.90 (m, 8H, ArH), 7.98 (s, 1H, N=CH). ¹³C NMR δ 36.5 $(CH_2CH_2CH_2)$, 44.74 $(CH_2CH_2CH_2-NH),$ 48.4(NCH₂CH₂CH₂), 114.2 (C-2), 119.6 (C-5), 123.8 (C-9), 125.5 (C-3), 126.8 (C-12), 128.4 (C-4), 129.5 (C-8), 131.6 (C-11), 132.4 (C-10), 134.6 (C-6), 139.1 (C-7), 146.3 (C-1), 152.6 (N=CH), 162.5 (CO). Anal. Calcd for C₁₇H₁₆N₅OBr: C, 52.86; H, 4.17; N, 18.13. Found: C, 52.76; H, 4.10; N, 18.05. MS-FAB: 386 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-N'-[(2-bro mophenyl)methylidene]urea (3g). Yield: 62%; mp 74-75 °C; IR v 638 (C-Br), 1559 (N=CH), 1666 (CO), 3368 (NH) cm⁻¹. ¹H NMR δ 2.26 (m, 2H, CH₂CH₂CH₂), 3.32 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂-NH), 4.22 (t, 2H, J =7.6 Hz, N-CH₂CH₂CH₂), 5.72 (s, 1H, NH), 7.31–7.63 (m, 8H, ArH), 8.02 (s, 1H, N=CH). ¹³C NMR δ 38.5 $(CH_2CH_2CH_2),$ 44.5 $(CH_2CH_2CH_2-NH),$ 51.4 (N-CH₂CH₂CH₂), 115.4 (C-2), 121.5 (C-5), 121.7 (C-8), 124.2 (C-3), 128.3 (C-11), 129.4 (C-4), 130.5 (C-12), 131.4 (C-10), 133.9 (C-9), 134.2 (C-6), 142.3 (C-7), 149.7 (C-1), 152.8 (N=CH), 161.9 (CO). Anal. Calcd for C₁₇H₁₆N₅OBr: C, 52.86; H, 4.17; N, 18.13. Found: C, 52.80; H, 4.08; N, 18.12. MS-FAB: 386 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(4-nitro phenyl)methylidene]urea (3h). Yield: 66%; mp 73–74 °C; IR v 847 (C–NH), 1530 (N=O), 1568 (N=CH), 1668 (CO), 3358 (NH) cm⁻¹. ¹H NMR δ 2.24 (m, 2H, CH₂CH₂CH₂), 3.28 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂CH₂), 3.28 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂-NH), 4.24 (t, 2H, *J* = 7.6 Hz, N-CH₂CH₂CH₂), 5.81 (s, 1H, NH), 7.32–7.91 (m, 8H, ArH), 8.10 (s, 1H, N=CH). ¹³C NMR δ 40.1 (CH₂CH₂CH₂), 45.7 (CH₂CH₂CH₂-NH), 50.8 (NCH₂CH₂CH₂), 110.2 (C-2), 120.4 (C-5), 123.4 (C-9, C-11), 125.2 (C-3), 128.4 (C-4), 130.3 (C-8, C-12), 133.6 (C-6), 138.2 (C-7), 144.3 (C-1), 149.5 (C-10), 155.9

(N=CH), 162.3 (CO). Anal. Calcd for $C_{17}H_{16}N_6O_3$: C, 57.94; H, 4.57; N, 23.85. Found: C, 57.81; H, 4.51; N, 23.73. MS-FAB: 352 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(3-nitrophenyl)methylidene]urea (3i). Yield: 63%; mp 70–71 °C; IR v 840 (C–NH), 1528 (N=O), 1572 (N=CH), 1665 (CO), 3351 (NH) cm⁻¹. ¹H NMR δ 2.26 (m, 2H, CH₂CH₂CH₂), 3.20 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂*C*H₂-NH), 4.22 (t, 2H, *J* = 7.6 Hz, N-CH₂CH₂CH₂), 5.83 (s, 1H, NH), 7.21–7.86 (m, 8H, ArH), 8.07 (s, 1H, N=CH). ¹³C NMR δ 39.7 (CH₂CH₂CH₂), 44.2 (CH₂CH₂CH₂-NH), 49.4 (N-CH₂CH₂CH₂), 111.2 (C-2), 119.5 (C-5), 121.5 (C-8), 124.2 (C-10), 125.4 (C-3), 129.3 (C-4), 129.9 (C-11), 133.5 (C-6), 133.9 (C-12), 139.8 (C-7), 146.9 (C-1), 149.6 (C-9), 154.3 (N=CH), 160.2 (CO). Anal. Calcd for C₁₇H₁₆N₆O₃: C, 57.94; H, 4.57; N, 23.85. Found: C, 57.80; H, 4.55; N; 23.60. MS-FAB: 352 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(2-ni trophenyl)methylidene]urea (3j). Yield: 62%; mp 73–75 °C; IR v 841 (C-NH), 1533 (N=O), 1572 (N=CH), 1664 (CO), 3350 (NH) cm⁻¹. ¹H NMR δ 2.17 (m, 2H, CH₂CH₂CH₂), 3.35 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂-NH), 4.18 (t, 2H, *J* = 7.6 Hz, N-CH₂CH₂CH₂), 5.87 (s, 1H, NH), 7.26–7.99 (m, 8H, ArH), 8.12 (s, 1H, N=CH). ¹³C NMR δ 40.2 (CH₂CH₂CH₂), 45.1 (CH₂CH₂CH₂-NH), 48.9 (NCH₂CH₂CH₂), 110.6 (C-2), 120.5 (C-5), 123.6 (C-9), 125.2 (C-3), 127.3 (C-12), 129.1 (C-4), 130.4 (C-10), 132.9 (C-6), 134.2 (C-7), 135.6 (C-11), 145.3 (C-1), 146.2 (C-8), 155.4 (N=CH), 162.2 (CO). Anal. Calcd for C₁₇H₁₆N₆O₃: C, 57.94; H, 4.57; N, 23.85. Found: C, 57.90; H, 4.40; N, 23.75. MS-FAB: 352 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(4-meth oxyphenyl)methylidene]urea (3k). Yield: 61%; mp 68–69 °C; IR v 1561 (N=CH), 2947 (OCH₃), 3351 (NH) cm⁻¹. ¹H NMR δ 2.15 (m, 2H, CH₂CH₂CH₂), 3.28 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂-NH), 3.47 (s, 3H, OCH₃), 4.16 (t, 2H, *J* = 7.6 Hz, NCH₂CH₂CH₂), 5.78 (s, 1H, NH), 7.34–7.52 (m, 8H, ArH), 7.88 (s, 1H, N=CH). ¹³C NMR δ 37.2 (CH₂CH₂CH₂), 42.6 (CH₂CH₂CH₂-NH), 47.2 (N-CH₂CH₂CH₂), 51.7 (OCH₃), 111.3 (C-2), 114.5 (C-9, C-11), 119.6 (C-5), 122.9 (C-3), 128.2 (C-8, C-12), 130.0 (C-4), 131.1 (C-7), 132.8 (C-6), 148.6 (C-1), 154.2 (N=CH), 159.6 (C-10), 161.5 (CO). Anal. Calcd for C₁₈H₁₉N₅O₂: C, 64.08; H, 5.67; N, 20.75. Found: C, 63.96; H, 5.56; N, 20.65. MS-FAB: 337 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(3-meth oxyphenyl)methylidene]urea (3l). Yield: 62%; mp 67–68 °C; IR v 1559 (N=CH), 2942 (OCH₃), 3355 (NH) cm⁻¹. ¹H NMR δ 2.17 (m, 2H, CH₂CH₂CH₂), 3.30 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂-NH), 3.61 (s, 3H, OCH₃), 4.18 (t, 2H, J = 7.6 Hz, N-CH₂CH₂CH₂), 5.69 (s, 1H NH), 7.41–7.82 (m, 8H, ArH), 7.96 (s, 1H, N=CH). ¹³C NMR δ

Sharma et al.: Synthesis and Biological Activity of New Series of ...

37.7 (CH₂CH₂CH₂), 42.9 (CH₂CH₂CH₂-NH), 47.7 (N-CH₂CH₂CH₂), 54.7 (OCH₃), 110.2 (C-2), 114.1 (C-8), 115.4 (C-10), 117.2 (C-12), 119.5 (C-5), 125.3 (C-3), 128.7 (C-11), 129.6 (C-4), 133.4 (C-6), 140.4 (C-7), 146.5 (C-1), 153.7 (N=CH), 160.7 (C-9), 161.9 (CO). Anal. Calcd for C₁₈H₁₉N₅O₂: C, 64.08; H, 5.67; N, 20.75. Found: C, 63.98; H, 5.64; N, 20.62. MS-FAB: 337 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(2-meth oxyphenyl)methylidene]urea (3m). Yield: 64%; mp 62–64 °C; IR v 1558 (N=CH), 2945 (OCH₃), 3361 (NH) cm⁻¹. ¹H NMR δ 2.12 (m, 2H, CH₂CH₂CH₂), 3.32 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂-NH), 3.67 (s, 3H, OCH₃), 4.16 (t, 2H, *J* = 7.6 Hz, N-CH₂CH₂CH₂), 5.74 (s, 1H, NH), 7.22–7.72 (m, 8H, ArH), 7.86 (s, 1H, N=CH). ¹³C NMR δ 38.3 (CH₂CH₂CH₂), 43.2 (CH₂CH₂CH₂-NH), 48.1 (N-CH₂CH₂CH₂), 53.7 (OCH₃), 113.2 (C-2), 118.4 (C-5), 123.5 (C-3), 126.7 (C-9), 127.7 (C-8), 128.6 (C-10), 129.6 (C-4), 130.9 (C-11), 132.5 (C-6), 135.9 (C-12), 138.8 (C-7), 147.4 (C-1), 151.0 (N=CH), 158.1 (CO). Anal. Calcd for C₁₈H₁₉N₅O₂: C, 64.08; H, 5.67; N, 20.75. Found: C, 63.90; H, 5.57; N, 20.61. MS-FAB: 337 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(4- meth ylphenyl)methylidene]urea (3n). Yield: 60%; mp 57–58 °C; IR v 1548 (N=CH), 2917 (CH₃), 3342 (NH) cm⁻¹. ¹H NMR δ 2.11 (m, 2H, CH₂CH₂CH₂), 2.64 (s, 3H, CH₃), 3.22 (t, 2H, *J* = 7.4 Hz, CH₂CH₂CH₂-NH), 4.03 (t, 2H, *J* = 7.4 Hz, N-CH₂CH₂CH₂), 5.67 (s, 1H, NH), 7.39–7.79 (m, 8H, ArH), 7.89 (s, 1H, N=CH). ¹³C NMR δ 24.9 (CH₃), 36.6 (CH₂CH₂CH₂), 42.6 (CH₂CH₂CH₂-NH), 46.8 (N-CH₂CH₂CH₂), 113.2 (C-2), 120.3 (C-5), 124.5 (C-3), 126.4 (C-8, C-12), 128.6 (C-4), 129.9 (C-9, C-11), 132.7 (C-6), 134.7 (C-7), 137.6 (C-10), 146.3 (C-1), 151.2 (N=CH), 159.8 (CO). Anal. Calcd for C₁₈H₁₉N₅O: C, 67.27; H, 5.95; N, 21.79. Found: C, 67.18; H, 5.90; N, 21.72. MS-FAB: 321 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(3-met hylphenyl)methylidene]urea (30). Yield: 61%; mp 54–56 °C; IR v 1544 (N=CH), 2923 (CH₃), 3345 (NH) cm⁻¹. ¹H NMR δ 4.05 (m, 2H, CH₂CH₂CH₂), 2.58 (s, 3H, CH₃), 3.17 (t, 2H, *J* = 7.5 Hz, CH₂CH₂CH₂-NH), 4.05 (t, 2H, *J* = 7.5 Hz, N-CH₂CH₂CH₂), 5.78 (s, 1H, NH), 7.31–7.84 (m, 8H, ArH), 7.91 (s, 1H, N=CH). ¹³C NMR δ 22.4 (CH₃), 36.5 (CH₂CH₂CH₂), 42.5 (CH₂CH₂CH₂-NH), 45.8 (N-CH₂CH₂CH₂), 112.4 (C-2), 121.5 (C-5), 125.2 (C-12), 126.6 (C-3), 127.1 (C-8), 128.2 (C-4), 129.2 (C-11), 130.6 (C-10), 132.4 (C-6), 137.5 (C-7), 139.5 (C-9), 147.5 (C-1), 152.0 (N=CH), 160.8 (CO). Anal. Calcd for C₁₈H₁₉N₅O: C, 67.27; H, 5.95; N, 21.79. Found: C, 67.11; H, 5.88; N, 21.76. MS-FAB: 321 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(2-meth ylphenyl)methylidene]urea (3p). Yield: 62%; mp 52–54 °C; IR v 1553 (N=CH), 2908 (CH₃), 3341 (NH) cm⁻¹. ¹H

NMR δ 2.08 (m, 2H, CH₂CH₂CH₂), 2.60 (s, 3H, CH₃), 3.22 (t, 2H, *J* = 7.4 Hz, CH₂CH₂CH₂-NH), 4.00 (t, 2H, *J* = 7.4 Hz, N-CH₂CH₂CH₂), 5.72 (s, 1H, NH), 7.34–7.76 (m, 8H, ArH), 7.88 (s, 1H, N=CH). ¹³C NMR δ 21.9 (CH₃), 38.7 (CH₂CH₂CH₂), 43.4 (CH₂CH₂CH₂-NH), 45.7 (N-CH₂CH₂CH₂), 113.3 (C-2), 120.5 (C-5), 124.5 (C-3), 126.1 (C-9), 126.8 (C-8), 128.9 (C-4), 129.7 (C-10), 130.3 (C-11), 133.6 (C-6), 136.5 (C-12), 138.6 (C-7), 145.5 (C-1), 154.0 (N=CH), 159.2 (CO). Anal. Calcd for C₁₈H₁₉N₅O: C, 67.27; H, 5.95; N, 21.79. Found: C, 67.21; H, 5.89; N, 21.70. MS-FAB: 321 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(4-hydro xyphenyl)methylidene]urea (3q). Yield: 64%; mp 72–73 °C; IR v 1557 (N=CH), 3385 (NH), 3472 (OH) cm⁻¹. ¹H NMR δ 2.22 (m, 2H, CH₂CH₂CH₂), 3.36 (t, 2H, *J* = 7.7 Hz, CH₂CH₂CH₂-NH), 4.15 (s, 1H, OH), 4.17 (t, 2H, *J* = 7.7 Hz, N-CH₂CH₂CH₂), 5.84 (s, 1H, NH), 7.32–7.79 (m, 8H, ArH), 8.07 (s, 1H, N=CH). ¹³C NMR δ 39.9 (CH₂CH₂CH₂), 45.7 (CH₂CH₂CH₂-NH), 50.4 (N-CH₂CH₂ CH₂), 111.3 (C-2), 118.9 (C-9, C-11), 120.7 (C-5), 124.3 (C-3), 127.9 (C-8, C-12), 128.4 (C-4), 130.8 (C-7), 132.2 (C-6), 147.1 (C-1), 153.3 (N=CH), 154.6 (C-10), 163.7 (CO). Anal. Calcd for C₁₇H₁₇N₅O₂: C, 63.14; H, 5.29; N, 21.65. Found: C, 63.07; H, 5.22; N, 21.50. MS-FAB: 323 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(3-hy droxyphenyl)methylidene]urea (3r). Yield: 60%; mp 70–72 °C; IR v 1561 (N=CH), 3379 (NH), 3464 (OH) cm⁻¹. ¹H NMR δ 2.18 (m, 2H, CH₂CH₂CH₂), 3.39 (t, 2H, *J* = 7.6 Hz, CH₂CH₂CH₂-NH), 4.24 (s, 1H, OH), 4.25 (t, 2H, *J* = 7.6 Hz, N-CH₂CH₂CH₂), 5.89 (s, 1H, NH), 7.36–7.74 (m, 8H, ArH), 8.01 (s, 1H, N=CH). ¹³C NMR δ 39.9 (CH₂CH₂CH₂), 44.7 (CH₂CH₂CH₂-NH), 49.7 (N-CH₂CH₂CH₂), 112.6 (C-2), 114.2 (C-8), 116.3 (C-4), 119.5 (C-12), 120.6 (C-5), 125.4 (C-3), 128.4 (C-4), 130.8 (C-11), 132.4 (C-6), 139.3 (C-7), 146.4 (C-1), 151.4 (N=CH), 155.6 (C-9), 160.7 (CO). Anal. Calcd for C₁₇H₁₇N₅O₂: C, 63.14; H, 5.29; N, 21.65. Found: C, 63.11; H, 5.18; N, 21.58. MS-FAB: 323 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-*N*'-[(2-hy droxyphenyl)methylidene]urea (3s). Yield: 62%; mp 68–69 °C; IR v 1565 (N=CH), 3381 (NH), 3460 (OH) cm⁻¹. ¹H NMR δ 2.28 (m, 2H, CH₂CH₂CH₂), 3.33 (t, 2H, *J* = 7.7 Hz, CH₂CH₂CH₂-NH), 4.36 (s, 1H, OH), 4.21 (t, 2H, *J* = 7.7 Hz, N-CH₂CH₂CH₂), 5.86 (s, 1H, NH), 7.25–7.69 (m, 8H, ArH), 7.97 (s, 1H, N=CH). ¹³C NMR δ 38.4 (CH₂CH₂CH₂), 43.5 (CH₂CH₂CH₂-NH), 49.2 (N-CH₂CH₂CH₂), 114.2 (C-2), 116.5 (C-9), 120.7 (C-5), 122.7 (C-11), 125.9 (C-3), 126.4 (C-7), 128.8 (C-12), 129.5 (C-4), 130.3 (C-10), 132.9 (C-6), 147.8 (C-1), 151.7 (N=CH), 154.2 (C-8), 161.1 (CO). Anal. Calcd for C₁₇H₁₇N₅O₂: C, 63.14; H, 5.29; N, 21.65. Found: C, 63.09; H, 5.23; N, 21.57. MS-FAB: 323 (M⁺).

Synthesis of 4a–s

A mixture of **3a–s** and chloroacetyl chloride in the presence of Et_3N (1:1:1 mole) was dissolved in methanol at room temperature and allowed to react. The reaction mixture was first continuously stirred on a magnetic stirrer for about 135–180 min, then refluxed on a steam bath for about 90–150 min. The products were filtered and cooled at room temperature. The filtered products were purified with a column chromatography and recrystallized from ethanol at room temperature to yield compounds **4a–s**.

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-phenyl-3chloro-4-oxo-1-azetidinecarboxamide (4a). Yield: 68%; mp 78–79 °C; IR v 1329 (C–NH), 1732 (CO cyclic), 2908 (CH–Cl) cm⁻¹. ¹H NMR δ 2.10 (m, 2H, CH₂C*H*₂CH₂), 3.28 (t, 2H, *J* = 7.5 Hz, CH₂CH₂C*H*₂-NH), 4.11 (t, 2H, *J* = 7.5 Hz, N-C*H*₂CH₂CH₂), 4.48 (d, *J* = 5.0 Hz, 1H, CH-Cl), 5.17 (d, *J* = 5.0 Hz, 1H, N-CH), 5.60 (s, 1H, NH), 6.85–7.72 (m, 9H, ArH). ¹³C NMR δ 34.4 (CH₂C*H*₂CH₂), 40.5 (CH₂CH₂CH₂-NH), 47.2 (N-CH₂CH₂CH₂), 54.9 (CH-Cl), 62.7 (N-CH), 110.3 (C-2), 118.9 (C-5), 125.7 (C-3), 126.4 (C-8, C-12), 128.4 (C-4), 129.8 (C-10), 130.1 (C-9, C-11), 132.6 (C-6), 136.4 (C-7), 145.9 (C-1), 161.1 (CO), 168.7 (CO cyclic). Anal. Calcd for C₁₉H₁₈N₅O₂Cl: C, 59.45; H, 4.72; N, 18.24. Found: C, 59.38; H, 4.61; N, 18.15. MS-FAB: 383 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(4-chloro phenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4b). Yield: 64%; mp 85-87 °C; IR v 765 (C-Cl), 1337 (C-NH), 1752 (CO cyclic), 2915 (CH-Cl) cm⁻¹. ¹H NMR δ 2.17 (m, 2H, CH₂CH₂CH₂), 3.30 (t, 2H, J = 7.6 Hz, $CH_2CH_2CH_2-NH$, 4.12 (t, 2H, J = 7.6 Hz, $N-CH_2CH_2CH_2$, 4.65 (d, 1H, J = 5.1 Hz, CH-Cl), 5.39 (d, 1H, J = 5.1 Hz, N-CH), 5.64 (s, 1H, NH), 6.86–7.75 (m, 8H, ArH). ¹³C NMR δ 38.2 (CH₂CH₂CH₂), 42.5 (CH₂CH₂CH₂-NH), 49.3 (N-CH₂CH₂CH₂), 53.7 (CH-Cl), 63.6 (N-CH), 116.2 (C-2), 120.9 (C-5), 123.7 (C-3), 127.7 (C-8, C-12), 128.6 (C-4), 129.4 (C-9, C-11), 132.8 (C-6), 135.5 (C-10), 136.7 (C-7), 146.9 (C-1), 164.1 (CO), 174.5 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₅O₂Cl₂: C, 54.55; H, 4.14; N, 16.74. Found: C, 54.48; H, 4.10; N, 16.60. MS-FAB: 418 (M⁺).

N-[**3**-(**1***H*-**1**,**2**,**3**-Benzotriazol-1-yl)propyl]-2-(3-chlorop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4c). Yield: 65%; mp 82–84 °C; IR v 776 (C–Cl), 1333 (C–NH), 1754 (CO cyclic), 2920 (CH–Cl) cm⁻¹. ¹H NMR δ 2.15 (m, 2H, CH₂CH₂CH₂), 3.33 (t, 2H, J = 7.5 Hz, CH₂CH₂CH₂-NH), 4.15 (t, 2H, J = 7.5 Hz, N-CH₂CH₂CH₂), 4.63 (d, 1H, J = 5.1 Hz, CH-Cl), 5.34 (d, 1H, J = 5.1 Hz, N-CH), 5.64 (s, 1H, NH), 6.79–7.64 (m, 8H, ArH). ¹³C NMR δ 37.4 (CH₂CH₂CH₂), 42.9 (CH₂CH₂CH₂-NH), 49.3 (N-CH₂CH₂CH₂), 55.8 (CH-Cl), 65.7 (N-CH), 114.2 (C-2), 118.4 (C-5), 124.3 (C-3), 126.7 (C-8), 128.3 (C-12), 129.1 (C-4), 129.9 (C-10), 131.4 (C-11), 134.4 (C-6), 135.3 (C-9), 138.1 (C-7), 147.9 (C-1), 164.3 (CO), 171.2 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₅O₂Cl₂: C, 54.55 H, 4.14; N, 16.74. Found: C, 54.47; H, 4.08; N, 16.58. MS-FAB: 418 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(2-chlorop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4d). Yield: 66%; mp 80-81 °C; IR v 773 (C-Cl), 1334 (C–NH), 1751 (CO cyclic), 2917 (CH–Cl) cm⁻¹. ¹H NMR δ 2.13 (m, 2H, CH₂CH₂CH₂), 3.28 (t, 2H, J = 7.6 Hz, $CH_2CH_2CH_2-NH)$, 4.14 (t, 2H, J = 7.6 Hz, $N-CH_2CH_2CH_2$, 4.62 (d, 1H, J = 5.1 Hz, CH-Cl), 5.33 (d, 1H, J = 5.1 Hz, N-CH), 5.68 (s, 1H, NH), 6.81–7.62 (m, 8H, ArH). ¹³C NMR δ 37.9 (CH₂CH₂CH₂), 43.1 (CH₂CH₂CH₂-NH), 48.7 (N-CH₂CH₂CH₂), 55.2 (CH-Cl), 64.6 (N-CH), 114.5 (C-2), 119.9 (C-5), 124.7 (C-3), 127.6 (C-11), 128.9 (C-4), 129.4 (C-9), 130.4 (C-10), 132.2 (C-12), 133.3 (C-6), 135.1 (C-8), 137.9 (C-7), 147.4 (C-1), 163.6 (CO), 173.7 (CO cyclic). Anal. Calcd for C₁₀H₁₇N₅O₂Cl₂: C, 54.55; H, 4.14; N, 16.74. Found: C, 54.48; H, 4.05; N, 16.70. MS-FAB: 418 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(4-bromop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4e). Yield: 61%; mp 78-80 °C; IR v 578 (C-Br), 1310 (C-NH), 1741 (CO cyclic), 2892 (CH-Cl) cm⁻¹. ¹H NMR δ 2.15 $(m, 2H, CH_2CH_2CH_2), 3.25$ (t, 2H, J = 7.6 Hz, $CH_{2}CH_{2}CH_{2}-NH)$, 4.20 (t, 2H, J = 7.6 Hz, $N-CH_2CH_2CH_2$, 4.63 (d, 1H, J = 5.2 Hz, CH-Cl), 5.44 (d, 1H, J = 5.2 Hz, N-CH), 5.70 (s, 1H, NH), 7.37–7.95 (m, 8H, ArH). ¹³C NMR δ 38.8 (CH₂CH₂CH₂), 43.2 (CH₂CH₂CH₂-NH), 49.6 (N-CH₂CH₂CH₂), 47.3 (CH-Cl), 59.7 (N-CH), 112.4 (C-2), 119.4 (C-5), 123.9 (C-10), 124.5 (C-3), 128.6 (C-4), 130.8 (C-8, C-12), 131.4 (C-9, C-11), 132.6 (C-6), 136.5 (C-7), 147.9 (C-1), 164.2 (CO), 172.3 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₅O₂BrCl: C, 49.31; H, 3.70; N, 15.13. Found: C, 49.19; H, 3.65; N, 15.05. MS-FAB: 462 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-(3-bromop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4f). Yield: 64%; mp 81–82 °C; IR v 572 (C–Br), 1319 (C–NH), 1747 (CO cyclic), 2895 (CH–Cl) cm⁻¹. ¹H NMR δ 2.20 (m, 2H, CH₂CH₂CH₂), 3.35 (t, 2H, J = 7.7 Hz, CH₂CH₂CH₂-NH), 4.21 (t, 2H, J = 7.7 Hz, N-CH₂CH₂CH₂), 5.38 (d, 1H, J = 5.2 Hz, N-CH), 5.57 (d, 1H, J = 5.2 Hz, CH-Cl), 5.72 (s, 1H, NH), 7.31–7.92 (m, 8H, ArH). ¹³C NMR δ 37.8 (CH₂CH₂CH₂), 42.8 (CH₂CH₂CH₂-NH), 48.6 (CH-Cl), 49.2 (N-CH₂CH₂CH₂), 59.9 (N-CH), 109.2 (C-2), 118.9 (C-5), 123.7 (C-9), 124.7 (C-3), 125.6 (C-12), 128.4 (C-4), 129.8 (C-8), 132.5 (C-11), 133.4 (C-10), 134.5 (C-6), 140.3 (C-7), 145.6 (C-1), 163.7 (CO), 172.6 (CO cyclic). Anal. Calcd for $C_{19}H_{17}N_5O_2BrCl: C, 49.31; H, 3.70; N, 15.13.$ Found: C, 49.24; H, 3.59; N, 15.07. MS-FAB: 462 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-vl)propyl]-2-(2-bromop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4g). Yield: 65%; mp 77-78 °C IR v 566 (C-Br), 1327 (C-NH), 1753 (CO cyclic), 2882 (CH-Cl) cm⁻¹. ¹H NMR δ 2.22 (m, 2H, CH₂CH₂CH₂), 3.38 (t, 2H, J = 7.6 Hz, $CH_2CH_2CH_2-NH$, 4.16 (t, 2H, J = 7.6 Hz, N- $CH_2CH_2CH_2$), 4.66 (d, 1H, J = 5.2 Hz, CH-Cl), 5.15 (d, 1H, J = 5.2 Hz, N-CH), 5.69 (s, 1H, NH), 7.27–7.84 (m, 8H, ArH). ¹³C NMR δ 38.2 (CH₂CH₂CH₂), 43.0 (CH₂CH₂CH₂-NH), 47.8 (CH-Cl), 49.5 (N-CH₂CH₂CH₂), 58.8 (N-CH), 111.1 (C-2), 119.5 (C-5), 120.3 (C-8), 125.7 (C-3), 127.2 (C-11), 128.4 (C-4), 130.1 (C-12), 131.5 (C-10), 132.2 (C-6), 133.2 (C-9), 142.6 (C-7), 147.9 (C-1), 161.1 (CO), 172.5 (CO cyclic). Anal. Calcd for C₁₀H₁₇N₅O₂BrCl: C, 49.31; H, 3.70; N, 15.13. Found: C, 49.25; H, 3.43; N, 15.24. MS-FAB: 462 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(4-nitrophenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4h). Yield: 63%; mp 81-83 °C; IR v 868 (C-NO), 1352 (C-NH), 1540 (NO₂), 1745 (CO cyclic), 2923 (CH-Cl) cm^{-1} . ¹H NMR δ 2.26 (m, 2H, CH₂CH₂), 3.65 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂-NH), 4.20 (t, 2H, J = 7.4 Hz, $N-CH_2CH_2CH_2$), 5.44 (d, 1H, J = 5.3 Hz, N-CH), 4.59 (d, 1H, J = 5.3 Hz, CH-Cl), 5.72 (s, 1H, NH), 7.10–7.71 (m, 8H, ArH). ¹³C NMR δ 37.8 (CH₂CH₂CH₂), 42.7 (CH₂CH₂CH₂-NH), 50.2 (N-CH₂CH₂CH₂), 51.0 (CH-Cl), 68.8 (N-CH), 112.2 (C-2), 118.5 (C-5), 122.6 (C-9, C-11), 124.8 (C-3), 127.9 (C-8, C-12), 128.3 (C-4), 132.4 (C-6), 139.8 (C-7), 145.9 (C-1), 147.9 (C-10), 163.7 (CO), 173.6 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₆O₄Cl: C, 53.21; H, 3.99; N, 19.59. Found: C, 53.15; H, 3.79; N, 19.49. MS-FAB: 428 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-(3-nitrop henyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4i). Yield: 64%; mp 79–81 °C; IR v 864 (C–NO), 1358 (C–NH), 1542 (NO₂), 1749 (CO cyclic), 2916 (CH–Cl) cm⁻¹. ¹H NMR δ 2.28 (m, 2H, CH₂CH₂CH₂), 3.39 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂-NH), 4.19 (t, 2H, J = 7.6 Hz, CH₂CH₂CH₂, 4.47 (d, 1H, J = 5.2 Hz, CH-Cl), 5.45 (d, 1H, J = 5.2 Hz, N-CH), 5.74 (s, 1H, NH), 7.16–7.79 (m, 8H, ArH). ¹³C NMR δ 38.9 (CH₂CH₂CH₂), 43.6 (CH₂CH₂CH₂-NH), 49.9 (N-CH₂CH₂CH₂), 51.3 (CH-Cl), 68.8 (N-CH), 113.3 (C-2), 118.9 (C-5), 122.7 (C-8), 124.8 (C-10), 125.9 (C-3), 128.8 (C-4), 129.4 (C-11), 132.6 (C-6), 132.9 (C-12), 139.7 (C-7), 146.9 (C-1), 147.9 (C-9), 163.1 (CO), 175.6 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₆O₄Cl: C, 53.21, H, 3.99; N, 19.59. Found: C, 53.12; H, 3.87; N, 19.54. MS-FAB: 428 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(2-nitrop henvl)-3-chloro-4-oxo-1-azetidinecarboxamide (4j). Yield: 62%; mp 80-82 °C; IR v 869 (C-NO), 1355 (C-NH), 1542 (NO₂), 1747 (CO cyclic), 2917 (CH-Cl) cm^{-1} . ¹H NMR δ 2.17 (m, 2H, CH₂CH₂CH₂), 3.30 (t, 2H, J = 7.5 Hz, CH₂CH₂CH₂-NH), 4.12 (\tilde{t} , 2 \tilde{H} , J = 7.5 Hz, $N-CH_2CH_2CH_2$, 4.45 (d, 1H, J = 5.3 Hz, CH-Cl), 5.54 (d, 1H, J = 5.3 Hz, N-CH), 5.64 (s, 1H, NH), 7.05–7.71 (m, 8H, ArH). ¹³C NMR δ 38.4 (CH₂CH₂CH₂), 43.5 (CH₂CH₂CH₂-NH), 49.2 (N-CH₂CH₂CH₂), 54.6 (CH-Cl), 64.8 (N-CH), 112.4 (C-2), 117.4 (C-5), 122.5 (C-9), 123.8 (C-3), 127.6 (C-12), 128.6 (C-4), 130.8 (C-10), 132.9 (C-6), 133.5 (C-7), 135.3 (C-11), 145.7 (C-1), 146.5 (C-8), 161.1 (CO), 174.5 (CO cyclic). Anal. Calcd for C₁₉H₁₇N₆O₄Cl: C, 53.21; H, 3.99; N, 19.59. Found: C, 53.18; H, 3.90; N, 19.50. MS-FAB: 428 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(4-met hoxyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4k). Yield: 65%; mp 74-75 °C; IR v 1165 (C-O), 1329 (N–C), 1738 (CO cyclic), 2891 (CH–Cl) cm⁻¹. ¹H NMR δ 2.10 (m, 2H, CH₂CH₂CH₂), 3.25 (t, 2H, J = 7.6 Hz, $CH_2CH_2CH_2-NH$, 3.67 (s, 3H, OCH₂), 4.10 (t, 2H, J = 7.6 Hz, N-CH₂CH₂CH₂), 4.45 (d, 1H, J = 5.1 Hz, CH-Cl), 5.30 (d, 1H, J = 5.1 Hz, N-CH), 5.55 (s, 1H, NH), 7.26–7.92 (m, 8H, ArH). ¹³C NMR δ 34.4 (CH₂CH₂CH₂), 41.5 (CH₂CH₂CH₂-NH), 47.2 (N-CH₂CH₂CH₂), 49.4 (CH-Cl), 54.5 (OCH₃), 64.8 (N-CH), 112.3 (C-2), 114.4 (C-9, C-11), 120.1 (C-5), 124.8 (C-3), 126.9 (C-8, C-12), 128.5 (C-4), 131.7 (C-7), 132.4 (C-6), 145.3 (C-1), 159.8 (C-10), 162.6 (CO), 171.5 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₂Cl: C, 58.04; H, 4.87; N, 16.92. Found: C, 57.95; H, 4.78; N, 16.85. MS-FAB: 413 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(3-met hoxyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4I). Yield: 61%; mp 76–77 °C; IR v 1168 (C–O), 1325 (N–C), 1732 (CO cyclic), 2895 (CH–Cl) cm⁻¹. ¹H NMR δ 2.09 (m, 2H, $CH_2CH_2CH_2$), 3.26 (t, 2H, J = 7.5 Hz, $CH_2CH_2CH_2-NH$, 3.59 (s, 3H, OCH₂), 4.06 (t, 2H, J = 7.5 Hz, N-CH₂CH₂CH₂), 4.49 (d, 1H, J = 5.1 Hz, CH-Cl), 5.27 (d, 1H, J = 5.1 Hz, N-CH), 5.59 (s, 1H, NH), 7.36–8.02 (m, 8H, ArH). ¹³C NMR δ 35.9 (CH₂CH₂CH₂), 40.5 (CH₂CH₂CH₂-NH), 48.2 (N-CH₂CH₂CH₂), 49.8 (CH-Cl), 54.8 (OCH₃), 62.7 (N-CH), 112.4 (C-2), 113.2 (C-8), 115.6 (C-10), 120.2 (C-12), 123.6 (C-5), 124.5 (C-3), 127.5 (C-11), 128.4 (C-4), 132.6 (C-6), 138.4 (C-7), 147.5 (C-1), 159.6 (C-9), 160.4 (CO), 170.7 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₃Cl: C, 58.04; H, 4.87; N, 16.92. Found: C, 57.94; H, 4.72; N, 16.87. MS-FAB: 413 $(M^{+}).$

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-(2-met hoxyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide

(4m). Yield: 61%; mp 73–75 °C; IR v 1162 (C–O), 1325 (N–C), 1738 (CO cyclic), 2885 (CH–Cl) cm⁻¹. ¹H NMR δ 2.12 (m, 2H, CH₂CH₂CH₂), 3.22 (t, 2H, J = 7.4 Hz, CH₂CH₂CH₂-NH), 3.52 (s, 3H, OCH₃), 4.05 (t, 2H, J = 7.4 Hz, N-CH₂CH₂CH₂CH₂), 4.47 (d, 1H, J = 5.1 Hz, CH-Cl), 5.39 (d, 1H, J = 5.1 Hz, N-CH), 5.60 (s, 1H, NH), 7.04–7.87 (m, 8H, ArH). ¹³C NMR δ 35.3 (CH₂CH₂CH₂), 41.1 (CH₂CH₂CH₂-NH), 47.6 (N-CH₂CH₂CH₂), 47.5 (CH-Cl), 54.6 (OCH₃), 63.5 (N-CH), 112.4 (C-2), 115.4 (C-9), 121.3 (C-5), 121.8 (C-11), 123.8 (C-7), 124.5 (C-3), 127.5 (C-12), 128.4 (C-4), 129.9 (C-10), 132.4 (C-6), 147.8 (C-1), 157.4 (C-8), 160.1 (CO), 169.7 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₃Cl: C, 58.04; H, 4.87; N, 16.92. Found: C, 57.97; H, 4.82; N, 16.88. MS-FAB: 413 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-vl)propyl]-2-(4-methyl phenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4n). Yield: 62%; mp 72-73 °C; IR v 1330 (C-NH), 1742 (CO cyclic), 2889 (CH–Cl), 2927 (CH₂) cm⁻¹. ¹H NMR δ 2.07 (m, 2H, $CH_2CH_2CH_2$), 2.67 (s, 3H, CH_2), 3.19 (t, 2H, J =7.5 Hz, $CH_2CH_2CH_2-NH$, 4.01 (t, 2H, J = 7.5 Hz, N-C H_2 C H_2 C H_2), 4.53 (d, 1H, J = 5.0 Hz, CH-Cl), 5.45 (d, 1H, J = 5.0 Hz, N-CH), 5.64 (s, 1H, NH), 7.28–7.98 (m, 8H, ArH). ¹³C NMR δ 24.7 (CH₂), 38.4 (CH₂CH₂CH₂), 43.5 (CH₂CH₂CH₂-NH), 49.2 (N-CH₂CH₂CH₂), 52.7 (CH-Cl), 62.8 (N-CH), 110.4 (C-2), 118.9 (C-5), 125.7 (C-3), 127.7 (C-8, C-12), 128.5 (C-4), 129.5 (C-9, C-11), 133.5 (C-6), 134.8 (C-7), 138.6 (C-10), 146.4 (C-1), 161.1 (CO), 166.8 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₂Cl: C, 60.37; H, 5.06; N, 17.60. Found: C, 60.27; H, 4.97; N, 17.54. MS-FAB: 397 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(3-methy lphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (40). Yield: 60%; mp 70-71 °C; IR v 1324 (C-NH), 1748 (CO cyclic), 2894 (CH–Cl), 2929 (CH₃) cm⁻¹. ¹H NMR δ 2.02 $(m, 2H, CH_2CH_2CH_2), 2.62 (s, 3H, CH_2), 3.15 (t, 2H, J =$ 7.5 Hz, $CH_2CH_2CH_2-NH$, 4.00 (t, 2H, J = 7.5 Hz, $N-CH_2CH_2CH_2$, 4.55 (d, 1H, J = 5.0 Hz, CH-Cl), 5.38 (d, 1H, J = 5.0 Hz, N-CH), 5.60 (s, 1H, NH), 7.18–7.84 (m, 8H, ArH). ¹³C NMR δ 23.5 (CH₃), 33.4 (CH₂CH₂CH₂), 39.5 (CH₂CH₂CH₂-NH), 47.2 (N-CH₂CH₂CH₂), 51.0 (CH-Cl), 63.8 (N-CH), 110.5 (C-2), 118.2 (C-5), 122.7 (C-12), 123.3 (C-3), 126.5 (C-8), 128.7 (C-4), 129.3 (C-11), 129.9 (C-10), 132.2 (C-6), 137.6 (C-7), 139.1 (C-9), 147.9 (C-1), 159.8 (CO), 167.8 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₂Cl: C, 60.37; H, 5.06; N, 17.60. Found: C, 60.25; H, 4.95; N, 17.58. MS-FAB: 397 $(M^{+}).$

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-(2-methy lphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4p). Yield: 58%; mp 68–69 °C; IR v 1325 (C–NH), 1749 (CO cyclic), 2876 (CH–Cl), 2917 (CH₃) cm⁻¹. ¹H NMR δ 2.03 (m, 2H, CH₂CH₂CH₂), 2.76 (s, 3H, CH₃), 3.10 (t, 2H, J = 7.4 Hz, $CH_2CH_2CH_2$ -NH), 4.06 (t, 2H, J = 7.4 Hz, N- $CH_2CH_2CH_2$), 4.50 (d, 1H, J = 5.1 Hz, CH-Cl), 5.47 (d, 1H, J = 5.1 Hz, N-CH), 5.50 (s, 1H, NH), 7.21–8.09 (m, 8H, ArH). ¹³C NMR δ 23.6 (CH₃), 35.7 (CH₂CH₂CH₂), 40.6 (CH₂CH₂CH₂-NH), 47.1 (N- $CH_2CH_2CH_2$), 50.9 (CH-Cl), 62.4 (N-CH), 109.4 (C-2), 118.7 (C-5), 124.3 (C-3), 125.7 (C-9), 126.5 (C-8), 127.4 (C-10), 128.5 (C-4), 129.8 (C-11), 132.8 (C-6), 137.4 (C-12), 138.4 (C-7), 145.4 (C-1), 161.4 (CO), 168.2 (CO cyclic). Anal. Calcd for C₂₀H₂₀N₅O₂Cl: C, 60.37; H, 5.06; N, 17.60. Found: C, 60.29; H, 4.90; N, 17.49. MS-FAB: 397 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(4-hydro xyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4q). Yield: 60%; mp 78-79 °C; IR v 1188 (C-O), 1358 (C-NH), 2914 (CH-Cl), 1758 (CO cyclic), 3467 (OH) cm^{-1} . ¹H NMR δ 2.27 (m, 2H, CH₂CH₂CH₂), 3.38 (t, 2H, J = 7.7 Hz, CH₂CH₂CH₂-NH), 4.19 (t, 2H, J = 7.7 Hz, N- $CH_2CH_2CH_2$), 4.26 (s, 1H, OH), 4.59 (d, 1H, J = 5.2 Hz, CH-Cl), 5.38 (d, 1H, J = 5.2 Hz, N-CH), 5.74 (s, 1H, NH), 7.09–8.10 (m, 8H, ArH). ¹³C NMR δ 38.9 (CH₂CH₂CH₂), 43.8 (CH₂CH₂CH₂-NH), 50.2 (N-CH₂CH₂CH₂), 53.5 (CH-Cl), 63.9 (N-CH), 111.3 (C-2), 117.4 (C-9, C-11), 120.5 (C-5), 124.4 (C-3), 127.5 (C-8, C-12), 128.6 (C-4), 131.4 (C-7), 133.5 (C-6), 145.6 (C-1), 155.2 (C-10), 163.7 (CO), 172.4 (CO cyclic). Anal. Calcd for C₁₀H₁₈N₅O₃Cl: C, 57.07; H, 4.53; N, 17.51. Found: C, 56.91; H, 4.47; N, 17.45. MS-FAB: 399 (M⁺).

N-[3-(1H-1,2,3-Benzotriazol-1-yl)propyl]-2-(3-hy droxyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4r). Yield: 63%; mp 80-81 °C; IR v 1185 (C-O), 1362 (C-NH), 1765 (CO cyclic), 2925 (CH-Cl), 3469 (OH) cm⁻¹. ¹H NMR δ 2.25 (m, 2H, CH₂CH₂CH₂), 3.40 (t, 2H, J = 7.7 Hz, CH₂CH₂CH₂-NH), 4.26 (t, 2H, J = 7.7 Hz, N-CH₂CH₂CH₂), 4.22 (s, 1H, OH), 4.58 (d, 1H, J = 5.2Hz, CH-Cl), 5.45 (d, 1H, J = 5.2 Hz, N-CH), 5.74 (s, 1H, NH), 7.12–8.13 (m, 8H, ArH). ¹³C NMR δ 37.8 $(CH_2CH_2CH_2)$, 43.9 $(CH_2CH_2CH_2-NH),$ 49.8 (N-CH₂CH₂CH₂), 51.2 (CH-Cl), 64.7 (N-CH), 111.9 (C-2), 113.6 (C-8), 116.6 (C-10), 118.6 (C-12), 120.5 (C-5), 124.6 (C-3), 128.7 (C-4), 130.9 (C-11), 132.7 (C-6), 139.9 (C-7), 146.8 (C-1), 156.3 (C-9), 165.7 (CO), 173.8 (CO cyclic). Anal. Calcd for C₁₀H₁₈N₅O₃Cl: C, 57.07; H, 4.53; N, 17.51. Found: C, 56.79; H, 4.35; N, 17.39. MS-FAB: 399 (M⁺).

N-[3-(1*H*-1,2,3-Benzotriazol-1-yl)propyl]-2-(2-hy droxyphenyl)-3-chloro-4-oxo-1-azetidinecarboxamide (4s). Yield: 61%; mp 77–78 °C; IR v 1186 (C–O), 1359 (C–NH), 1755 (CO cyclic), 2917 (CH–Cl), 3459 (OH) cm⁻¹. ¹H NMR δ 2.26 (m, 2H, CH₂CH₂CH₂), 3.32 (t, 2H, J = 7.7 Hz, CH₂CH₂CH₂-NH), 4.22 (t, 2H, J = 7.7 Hz, N-CH₂CH₂CH₂), 4.25 (s, 1H, OH), 4.62 (d, 1H, J = 5.2Hz, CH-Cl), 5.51 (d, 1H, J = 5.2 Hz, N-CH), 5.76 (s, 1H, NH), 7.19–8.21 (m, 8H, ArH). ¹³C NMR δ 38.9 (CH₂CH₂CH₂), 43.1 (CH₂CH₂CH₂-NH), 49.6 (N-CH₂CH₂CH₂), 54.5 (CH-Cl), 63.6 (N-CH), 113.7 (C-2), 114.8 (C-9), 120.5 (C-5), 122.6 (C-11), 124.5 (C-3), 125.6 (C-7), 127.8 (C-12), 128.5 (C-4), 130.6 (C-10), 133.5 (C-6), 146.6 (C-1), 154.6 (C-8), 163.6 (CO), 173.2 (CO cyclic). Anal. Calcd for C₁₉H₁₈N₅O₃Cl: C, 57.07; H, 4.53; N, 17.51. Found: C, 56.81; H, 4.46; N, 17.43. MS-FAB: 399 (M⁺).

6. Pharmacological Experimental Section

The synthesized compounds were screened against some selected microorganisms and determined their percentage inhibition zones. The percentage inhibition zone values were determined using the filter paper disc diffusion method and the concentrations have been used in ppm. All the final synthesized compounds 4a-s have been screened in vitro for their antibacterial activity against Bacillus subtilis, Escherichia coli and Staphylococcus aureus and antifungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans. Streptomycin and griseofulvin were used as standards for antibacterial and antifungal activity, respectively, and also screened under the similar conditions for comparison. The antitubercular activity was screened against the M. tuberculosis. For the antitubercular activity isoniazid and rifampicin were used as standards and also screened under the similar conditions for comparison.

6.1. Antibacterial Activity

The antibacterial activity of compounds **4a–s** has been assayed in vitro at two concentrations (50 and 100 ppm) against *B. subtilis*, *E. coli* and *S. aureus*. The percentage inhibition zones of the compounds **4a–s** were determined by the filter paper disc diffusion method. Streptomycin used as standard showed 100% inhibition at both above concentrations. The percentage inhibition zones of the tested compounds are given in Table 1.

Table 1. In vitro antibacterial activity of compounds 4a-s and their inhibition zone (%).

Com	p. B. subtilis		<i>E</i> .	coli	S. aureus		
	50 ppm	100 ppm	50 ppm	100 ppm	50 ppm	100 ppm	
4a	35	52	29	42	32	47	
4b	47	78	53	75	42	65	
4c	40	65	48	59	42	64	
4d	64	76	61	76	47	62	
4e	58	72	57	69	54	70	
4f	55	77	54	66	55	70	
4g	62	76	60	68	58	78	
4h	26	62	67	82	64	82	

4i	24	71	56	78	62	80
4j	27	73	54	79	70	86
4k	38	55	40	52	32	45
41	50	60	41	56	30	42
4m	48	58	43	53	30	48
4n	47	55	38	52	31	44
4 0	40	52	32	48	29	48
4p	41	54	35	50	38	48
4q	44	62	45	64	41	59
4r	48	68	48	66	40	62
4s	40	62	43	60	46	62

Streptomycin used as standard showed 100% inhibition at both 50 and 100 ppm.

6. 2. Antifungal Activity

The antifungal activity of compounds **4a**–**s** has been assayed in vitro at two concentrations (50 and 100 ppm) against *A. niger*, *A. flavus* and *C. albicans*. The percentage inhibition zones of the compounds **4a–s** were determined by the using filter paper disc diffusion method. Griseofulvin used as standard showed 100% inhibition at both above concentrations. The percentage inhibition zones of the tested compounds are given in Table 2.

Table 2. In vitro antifungal activity of compounds 4a-s and their inhibition zone (%).

Com	р. <i>А</i> .	o. A. niger		lavus	C. albicans		
	50 ppm	100 ppm	50 ppm	100 ppm	50 ppm	100 ppm	
4a	38	50	40	50	30	49	
4b	50	68	58	70	45	63	
4c	43	65	40	65	42	62	
4d	58	76	48	73	50	70	
4e	50	72	59	71	51	66	
4f	50	77	50	67	58	65	
4g	45	76	44	56	50	62	
4h	60	82	53	78	54	69	
4i	61	81	54	75	52	70	
4j	60	86	55	72	50	72	
4k	40	54	30	44	38	47	
41	45	52	30	48	45	52	
4m	40	59	31	46	38	48	
4n	39	48	24	38	29	44	
40	30	45	25	34	28	40	
4p	33	48	27	32	28	38	
4q	36	52	33	54	36	49	
4r	42	59	41	58	54	62	
4s	40	52	43	50	46	52	

Griseofulvin used as standard showed 100% inhibition at both 50 and 100 ppm.

6. 3. Antitubercular Activity

The synthesized compounds 4a-s were screened against *M. tuberculosis* using L. J. medium (conventional)

Sharma et al.: Synthesis and Biological Activity of New Series of

method at two concentration (50 and 100 ppm) against *M. tuberculosis* H37Rv strain. The results are shown in Table 3. The standard antitubercular drugs isoniazid and rifampicin were taken as standards showing 100% inhibition at both above concentrations.

Table 3. Antitubercular percentage inhibition activity at 50 μ g/mL concentration.

Co	mp. %	Comj	p. %	Com	p. %	Com	p. %	Con	1р. %
	activit	y	activit	y	activit	ty	activi	ty	activity
4a	59	4e	85	4i	79	4m	63	4q	55
4b	78	4f	80	4j	80	4n	60	4r	75
4c	82	4g	76	4k	72	40	55	4 s	60
4d	84	4h	80	41	70	4p	52		

Isoniazid and rifampicin were used as standard showed 100% inhibition at both 50 and 100 ppm.

7. Acknowledgement

The authors are thankful to SAIF, Central Drugs Research Institute Lucknow (India) for providing spectral and analytical data of the compounds. We are thankful to Head, Department of Biotechnology, Dr. H. S. Gour, University (A Central University), Sagar (India) for antimicrobial (antibacterial and antifungal) and Microcare laboratory and Tuberculosis Research Center Surat, Gujarat (India) for antituberculosis activity. We are also thankful to Head, Department of Chemistry Dr. H. S. Gour, University (A Central University), Sagar (India) for giving the facilities to carryout the work.

8. References

- 1. A. Nema, S. K. Srivastava, J. Indian Chem. Soc. 2007, 84, 1037–1041.
- I. K. Bhati, S. K. Chaithanyal, P. D. Satyanarayana, B. Kalluraya, J. Serb. Chem. Soc. 2007, 72, 437–442.
- 3. F. H. van der Steen, G. van Koten, *Tetrahedron* 1991, 47, 7503–7524.
- 4. G. S. Singh, Mini-Rev. Med. Chem. 2004, 93-99.
- 5. S. K. Srivastava, S. Srivastava, S. D. Srivastava, *Indian J. Chem.* **2000**, *38B*, 464–467.
- A. K. Parikh, P. S. Oza, S. B. Bhatt, *Indian J. Chem.* 2005, 44B, 585–590.

- R. B. Patel, P. S. Desai, K. H. Chikhalia, *Indian J. Chem.* 2006, 45B, 773–778.
- 8. K. A. Parikh, P. S. Oza, S. B. Bhatt, A. R. Parikh, *Indian J. Chem.* 2000, 39B, 716–718.
- S. K. Srivastava, S. L. Srivastava, S. D. Srivastava, *Indian J. Chem.* 1999, 39B, 183–187.
- 10. D. K. Shukla, S. D. Srivastava, *Indian J. Chem.* **2008**, *47B*, 463–469.
- 11. A. A. Chavan, N. R. Pai, Molecules 2007, 12, 2467-2477.
- 12. G. S. Singh, E. Mbukwa, T. Pheko, Arkivoc 2007, (ix), 80–90.
- 13. T. R. Rawat, S. D. Srivastava, *Indian J. Chem.* **1998**, *37B*, 91–94.
- 14. E. Alonso, C. del Pozo, J. González, Synlett 2002, 69-72.
- 15. G. Wu, W. Tormos, J. Org. Chem. 1997, 62, 6412-6414.
- 16. J. W. Skiles, D. McNeil, *Tetrahedron Lett.* **1990**, *31*, 7277–7280.
- B. S. Vashi, D. S. Mehta, V. H. Shah, *Indian J. Chem.* 1995, 34B, 802–808.
- C. S. Reddy, L. S. Rao, A. Nagaraj, *Acta Chim. Slov.* 2010, 57, 726–732.
- N. Lebouvier, F. Pagniez, M. Duflos, P. Le Pape, Y. M. Na,
 G. Le Baut, M. Le Borgne, *Bioorg. Med. Chem. Let.* 2007, 17, 3686–3689.
- A. Pućkowska, D. Bartulewicz, K. Midura-Nowaczek, Acta Poloniae Pharmaceutica-Drug Res. 2005, 62, 59–64.
- P. Sanna, A. Carta, M. E. R. Nikookar, *Eur. J. Med Chem.* 2000, 35, 535–543.
- 22. T. Yoshikawa, Y. Mine, K. Morikage, N. Yoshida, *Arzneim. Forsch.* **2003**, *53*, 98–106.
- 23. A. R. Kalasalingam, A. Rajagopal, *Acta Pharm.* 2009, 59, 355–364.
- R. M. Claramunt, D. S. María, E. Pinilla, M. R. Torres, J. Elguero, *Molecules* 2007, *12*, 2201–2214.
- A. Rajasekaran, V. Rajamanickam, P. T. Kumaresan, S. Murugesan, V. Sivakumar, *Int. J. Chem. Sci.* 2004, 2, 445–449.
- 26. A. Najda-Bernatowicz, M. Łebska, A. Orzeszko, K. Kopańska, E. Krzywińska, G. Muszyńska, M. Bretner, Bioorg. *Med. Chem.* 2009, 15, 1573–1578.
- 27. C.-Y. Wu, K.-Y. King, C.-J. Kuo, J.-M. Fang, Y.-T. Wu, M.-Y. Ho, C.-L. Liao, J. J. Shie, P.-H. Liang, C.-H. Wong, *Chem. Biol.* **2006**, *13*, 261–268.
- G. Caliendo, R. Di Carlo, G. Greco, R. Meli, E. Novellino, E. Perissutt, V. Santagada, *Eur. J. Med. Chem.* 1995, 30, 77–84.
- A. Carta, G. Loriga, S. Piras, G. Paglietti, M. Ferrone, M. Fermeglia, S. Pricl, P. La Colla, B. Secci, G. Collu, R. Loddo, *Med. Chem.* 2006, 2, 577–589.

Povzetek

Za klasično sintezo nove serije N-[3-(1H-1,2,3-benzotriazol-1-il)propil]-2-(4-substituiranih fenil)-3-kloro-4-okso-1azetidinekarboksamidov **4a-s** smo kot izhodno spojino uporabili 1,2,3-benzotriazol. Spojinam **4a-s** smo določili delovanje proti bakterijam, glivam in tuberkulozi. Strukture pripravljenih spojin smo potrdili s kemijsko analizo in spektroskopskimi metodami kot so IR, 1H NMR, 13C NMR ter FAB masno spektroskopijo.